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Consider two statistical experiments EP and EQ.

Suppose that EP and EQ are “close”.

Le Cam’s method : with the “correct notion of closeness” there
is an automatic transfer of solutions to certain types of decision
theoretic problems from EQ to EP .

In other words, optimal procedures for EQ become (nearly)
optimal procedures for EP and vice-versa.

In this talk the “correct notion of closeness” is Local Asymptotic
Normality (LAN).



Consider X(n) = (X (n)
1 , . . . ,X (n)

n ) observations described by

P(n) =
{

P(n)
θθθ : θθθ ∈ Θ ⊂ RK

}
.

The sequence of models is LAN if, for all θθθ ∈ Θ, there exist
- a central sequence ∆∆∆(n)(θθθ)(= ∆∆∆(n)(θθθ,X(n)))

- a Fisher information matrix ΓΓΓ(θθθ)

such that, for τττn ∈ RK ,

log

dP(n)

θθθ+nnn−1/2τττn

dP(n)
θθθ

 = τττ ′n∆∆∆(n)(θθθ)− 1
2
τττ ′nΓΓΓ(θθθ)τττn + oP(1)

and ∆∆∆(n)(θθθ)
L−→ N (000,ΓΓΓ(θθθ)), both under P(n)

θθθ as n→∞.



The log-likelihood reminds us of

log

(
f∆∆∆
τττ (∆∆∆)

f∆∆∆
000 (∆∆∆)

)
= τττ ′∆∆∆− 1

2
τττ ′ΓΓΓΓΓΓΓΓΓτττ

the (exact) log-likelihood for a Gaussian shift model N (ΓΓΓτττ ,ΓΓΓ).

LAN means that the likelihoods of P(n) resemble the likelihoods
of a Gaussian shift model.

More importantly LAN means that all risk functions can be
approximated by the risk functions for the Gaussian model !

Consequence : We know how, given ∆∆∆(n)(θθθ) and ΓΓΓ(θθθ), to
construct locally and asymptotically optimal (parametric)
procedures for θθθ.



1 Le Cam’s method in a nutshell

2 Spherical LAN

3 Spherical ranks



Consider observations X1, . . . ,Xn ∈ Sk−1 from model

P(n) =
{

P(n)
θθθ;f1
|θθθ ∈ Sk−1

}
where Pθθθ;f1 has rotationally symmetric density

x 7→ fθθθ(x) = ck ,f1 f1(x′θθθ), x ∈ Sk−1, (1)

with respect to the usual surface area measure on spheres and
where f1 : [−1,1]→ R+

0 is absolutely continuous and (strictly)
monotone increasing.

Question : is it possible to obtain a LAN result for this family of
distributions ?

In other words, do small perturbations of the parameter θθθ result
in the “quasi-Gaussian” representation for the log-likelihood ?



The answer to the question is yes (but it’s not easy to prove).

1 Pass into spherical coordinates

ηηη ∈ Rk−1 → θθθ = ~(ηηη) ∈ Sk−1.

2 Prove that, under reasonable assumptions on f1, the
likelihood will have correct behaviour under perturbations
in ηηη, i.e. the family {

P(n);~
ηηη;f1
| ηηη ∈ Rk−1

}
is LAN.

3 Prove that one can read this approximation entirely “on the
sphere” without needing the spherical coordinates.



Specifically, define
1

∆∆∆
(n)
θθθ;f1

:= n−1/2
n∑

i=1

ϕf1(X′iθθθ)(1− (X′iθθθ)2)1/2Sθθθ(Xi)

where

ϕf1 := ḟ1/f1 and Sθθθ(Xi) :=
X− (X′θθθ)θθθ

‖X− (X′θθθ)θθθ‖
.

2

ΓΓΓθθθ;f1 :=
Jk (f1)

k − 1
(Ik − θθθθθθ′)

with, for f̃1 the density of X′θθθ,

Jk (f1) :=

∫ 1

−1
ϕ2

f1(t)(1− t2)f̃1(t)dt .



Theorem (ULAN)

Assume three technical assumptions.

Then,

1 for any θθθ(n) ∈ Sk−1 such that θθθ(n) − θθθ = O(n−1/2)

2 for any sequence tn such that θθθ(n) + n−1/2tn ∈ Sk−1,

we have

log

dP(n)

θθθ(n)+n−1/2tn;f1

dP(n)

θθθ(n);f1

 = t′n∆∆∆
(n)

θθθ(n);f1
− 1

2
t′nΓΓΓθθθ;f1tn + oP(1)

and
∆∆∆

(n)

θθθ(n);f1

L→ Nk−1(0,ΓΓΓθθθ;f1),

both under P(n)

θθθ(n);f1
, as n→∞.



1 Le Cam’s method in a nutshell

2 Spherical LAN

3 Spherical ranks



The ULAN result is very nice but still insufficient as procedures
will be based on

∆∆∆
(n)

θθθ(n);f1
= n−1/2

n∑
i=1

ϕf1(X′iθθθ
(n))(1− (X′iθθθ

(n))2)1/2Sθθθ(n)(Xi)

and thus only be valid for known angular function f1.

To ensure validity over all f1, the next step in the Le Cam
method is to

replace ∆∆∆
(n)
θθθ;f1

with ∆∆∆˜ (n)
θθθ;K

a rank-based version of the central sequence, such that
1 the observations are replaced by their ranks
2 the score-function ϕf1(·) is replaced by an arbitrary score

function K .

To this end we need an appropriate notion of “spherical ranks”.



A natural requirement for ∆∆∆˜ (n)
θθθ;K is its distribution-freeness under⋃
g1

P(n)
θθθ;g1

.

Invariance principle : If the family of distributions is invariant
under the action of some group of transformations, then it is
best to express ∆∆∆˜ (n)

θθθ;K in terms of the corresponding maximal
invariant.

In order to proceed we thus need to answer the question :

which group of transformations generates
⋃

g1
P(n)
θθθ;g1

?



Fix θθθ ∈ Sk−1 and note that

X := (X′θθθ)θθθ +
√

1− (X′θθθ)2Sθθθ(X)

for all X ∈ Sk−1. Consider G(n)
h transformations

g(n)
h : (X1, . . . ,Xn) 7→ (gh(X1), . . . ,gh(Xn))

with

gh(Xi) := h(X′iθθθ)θθθ +
√

1− h(X′iθθθ)2Sθθθ(Xi)

for nondecreasing h : [−1,1]→ [−1,1] such that
h(−1) = h(1) = 0.



Then

gh(Xi) := h(X′iθθθ)θθθ +
√

1− h(X′iθθθ)2Sθθθ(Xi)

is such that

1 ‖gh(Xi)‖ = 1 so that g(n)
h sends Sk−1 to Sk−1

2 gh(gl(Xi)) = gh◦l(Xi), i.e. group action

3 G(n)
h is generating group for

⋃
g1∈F P(n)

θθθ;g1



Moreover
Sθθθ(gh(Xi)) = Sθθθ(Xi),

i.e. signs are invariant under the action of G(n)
h .

Finally, letting

Ri = Rank(Xi) = the rank of X′iθθθ among X′1θθθ, . . . ,X
′
nθθθ

we see that
Rank(gh(Xi)) = Rank(Xi)

i.e. the ranks Ri are invariant under the action of G(n)
h .

It follows that any statistic measurable with respect to the signs
Sθθθ(Xi) and ranks Ri is distribution-free under

⋃
g1

P(n)
θθθ;g1

.



Our spherical version of the Le Cam methodology : base
inference procedures on sign- and rank-based version of the
parametric central sequence

∆∆∆˜ (n)
θθθ;K := n−1/2

n∑
i=1

K
(

Ri

n + 1

)
Sθθθ(Xi),

where K is a score function satisfying some regularity
assumption.



Some more maths (including asymptotic linearity results) then
allow to construct
- Rank based estimators for θθθ (Paper 1, Statistica Sinica)
- Pseudo-FVML and Rank based tests for ANOVA problems

H0 : θθθ1 = · · · = θθθk

(Paper 2, submitted)

in both cases based on properties of ∆∆∆˜ (n)
θθθ;K .

These procedures are
1 valid under the whole family of rotationally symmetric

distributions ;
2 optimal for given f1 ;
3 behave quite well with respect to the more common

estimators / tests from the literature even in situations
where the latter are known to be optimal.



In the estimation problem, comparing to the spherical mean

θ̂θθ =
n∑

i=1

Xi/||
n∑

i=1

Xi ||

(MLE of θθθ under the FVML distribution).

AREs with respect to the spherical mean (ARE(θ̂θθf0
/θ̂θθMean))

Underlying density θ̂θθFVML(2) θ̂θθFVML(6) θ̂θθLin(2) θ̂θθLin(4) θ̂θθLog(2.5) θ̂θθLogis(1,1)

FVML(1) 0.9744 0.8787 0.9813 0.9979 0.9027 0.9321
FVML(2) 1 0.9556 0.9978 0.9586 0.9749 0.9823
FVML(6) 0.9555 1 0.9381 0.8517 0.9768 0.9911

Lin(2) 1.0539 0.9909 1.0562 1.0215 1.0212 1.0247
Lin(4) 0.9709 0.8627 0.9795 1.0128 0.8856 0.9231

Log(2.5) 1.1610 1.1633 1.1514 1.0413 1.1908 1.1625
Log(4) 1.0182 0.9216 1.0261 1.0347 0.9503 0.9741

Logis(1,1) 1.0768 1.0865 1.0635 0.9991 1.0701 1.0962
Logis(2,1) 1.3182 1.4426 1.2946 1.0893 1.4294 1.3865

TABLE : Asymptotic relative efficiencies (AREs) of R-estimators with
respect to the spherical mean under various 3-dimensional
rotationally symmetric densities.
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