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Halobacterium salinarum	


bacteriorhodopsin

Bovine 	


rhodopsin

The bacteriorhodopsin/GPCR superfold

248 aa

348 aaType 1 Type 2



Historic Protein Data Bank growth

>100,000 structures

http://www.rcsb.org/

~1010 pairwise comparisons

http://www.rcsb.org


MDH LDH rossmann fold

Malate and lactate dehydrogenases

rossmann fold

malate oxaloacetate pyruvatelactate

~40% sequence identity over > 300 residues



Morphometrics: Hominid crania

Three hominid skulls,  131 landmarks

Morphological features can be different sizes, so these involve scaling



Superposition = “optimal” relative orientation of two or more corresponding 
sets of atoms

Superposing fits structures together

Least-squares: Find the rotation that minimizes the sum of squared distances 
between corresponding atoms

+ =

rotation

translation
superposition



Classic superposition method:	


Least-squares

Least-squares: Find the rotation that minimizes the sum of squared 
distances between corresponding (labelled) atoms 

protein A protein B



Why least-squares? (and why not?)

Carl Friedrich Gauss Andrey Markov

Gauss-Markov Theorem

Least-squares gives the “best” (BLUE) answer if:	


!
1.  Atoms have equal variance	


2.  Atoms are uncorrelated



Structural models are imprecise: Experimental 
error and molecular dynamics

X-ray crystal structures:	



B-factors

NMR structures:	



Families

Pot1, an OB-fold Cdc13, another OB-fold



Model-based methods:	



• Assume a statistical model for the data (e.g., a Gaussian distribution).	



• Estimate parameters of your model from the observed data	



• ML: Find parameters that predict the data with the highest probability	



• Bayes:  Find distribution of the parameters given the data

Model-based alternatives to least-squares: 
Maximum Likelihood (ML) and Bayes

Two parameters in Gaussian PDF: 	


μ = location parameter (mean)	



σ = width parameter



Superposition likelihood function:	


Gaussian probability distribution of the data
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1 Methods

1.1 A matrix normal probability model for the macromolecular superposition problem

Consider n structures (Xi, i = 1 . . . n), each with k labelled landmarks, where each structure is described by a
k⇥d. We assume that each structure Xi is normally distributed and is observed in an arbitrary coordinate system
(Dryden and Mardia, 1998; Goodall, 1991; Goodall and Mardia, 1993). Heterogeneous variances and correlations
among the landmarks are described by a k⇥k covariance matrix � (isotropic in the d-dimensional space). Hence
each Xi can be considered to be an arbitrarily scaled, rotated, and translated zero-mean normal matrix displacement
Ei ⇤ Nk,d(0,�, I) of the mean structure M,

Xi =
1

�i
(M+Ei)R

⇥
i � 1kt

⇥
i (1)

where �i is a global scale factor, Ri is a d⇥d orthogonal rotation matrix, ti is a d⇥1 column vector for the
translational offset, and 1k denotes the k⇥1 column vector of ones.

1.2 A Procrustes matrix normal likelihood function

The full joint likelihood function for the model given in (1) is obtained from a matrix normal distribution Dawid
(1981). Define

Yi = (�iXi + 1kt
⇥
i)Ri

then the PDF for the likelihood function is:

p (X|�,M,R, t,�) = C exp

⇤
�1

2

n⇧

i

tr
�
[Yi �M]⇥��1[Yi �M]

⇥
⌅
, (2)

with normalization constant:

C = (2⇥)�
kdn
2

⇤
n⌃

i

�kd
i

⌅
|�|�

dn
2 . (3)

1.3 A Bayesian extension

The likelihood analysis described above does not provide ready estimates of the uncertainty in the estimated param-
eters. In an earlier presentation at this conference (Theobald, 2009), a Bayesian extension was described allowing
for the incorporation of other prior data. For the Bayesian analysis we assume that �,M,R, t,� are all a priori
independent, so that

p (�,M,R, t,�|X) ⌅ p (X|�,M,R, t,�) p (�) p (M) p (R) p (t) p (�). (4)

We will also assume a hierarchical prior for �:

p (�) ⌅ p (�|⇥, n) p (⇥). (5)

p (�,M,R, t,�|X) ⌅ p (X|�,M,R, t,�) p (�) p (M) p (R) p (t) p (�|⇥, n) p (⇥). (6)
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Perturbation model

Likelihood

ti is its translation (3-vector)	



Ri is its rotation (3 × 3 matrix)	



βi is its scaling factor	



Σ is the overall covariance matrix (k × k matrix)	



Μ is the overall mean structure (k × 3 matrix)

unknown 
parameters

Xi is the ith molecular structure (k × 3 matrix) -- n structures, k atoms



Superposition likelihood function:	


Gaussian probability distribution of the data
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(Dryden and Mardia, 1998; Goodall, 1991; Goodall and Mardia, 1993). Heterogeneous variances and correlations
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Ei ⇤ Nk,d(0,�, I) of the mean structure M,

Xi =
1

�i
(M+Ei)R

⇥
i � 1kt

⇥
i (1)

where �i is a global scale factor, Ri is a d⇥d orthogonal rotation matrix, ti is a d⇥1 column vector for the
translational offset, and 1k denotes the k⇥1 column vector of ones.
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1.3 A Bayesian extension

The likelihood analysis described above does not provide ready estimates of the uncertainty in the estimated param-
eters. In an earlier presentation at this conference (Theobald, 2009), a Bayesian extension was described allowing
for the incorporation of other prior data. For the Bayesian analysis we assume that �,M,R, t,� are all a priori
independent, so that

p (�,M,R, t,�|X) ⌅ p (X|�,M,R, t,�) p (�) p (M) p (R) p (t) p (�). (4)
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8 Matrix Student-t Distribution: The Marginal likelihood for a diago-

nal covariance matrix (multivariate scaled inverse chi square)
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For n = 1 (used in THESEUS) and � = �I
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ML superposition solutions

In the following we briefly give the ML solutions for each of the unknown parameters of the superposition log-
likelihood equation from above.
Each observed structure Xi must be translated to its row-weighted centroid:

X̌i = Xi + 1K t̂i (124)

where t̂i is the ML estimate of the translation:

t̂i = � 1⇥K⇥�1Xi

1⇥K⇥�11K

t̂i = � 1⇥KXi

1⇥K1K

The optimal rotations are calculated using a singular value decomposition (SVD). Let the SVD of an arbitrary
matrix D be U�V⇥. Then, the ML rotations R̂i are estimated by

M̂⇥⇥̂�1X̌i = U�V⇥

R̂i = VPU⇥ (125)
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The mean structure is estimated as the arithmetic average of the optimally translated and rotated structures:
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where the unconstrained ML estimate of the covariance matrix ⇥̂U is:
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 Must be solved simultaneously (CM & EM algorithm)	


 Our program THESEUS implements this method (www.theseus3d.org)

Theobald and Wuttke (2006) PNAS 103:1852,  Theobald and Wuttke (2006) Bioinformatics 22:2171, 
Theobald and Wuttke (2008) PLoS Comput Biol 4:e43

7.1 Conditional probability for the diagonal covariance matrix ⌃
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This is simply another multivariate scaled inverse chi-square distribution (multivariate inverse gamma distribu-
tion):
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where
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which, for a diagonal precision matrix, gives
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1 Methods

1.1 A matrix normal probability model for the macromolecular superposition problem

Consider n structures (Xi, i = 1 . . . n), each with k labelled landmarks, where each structure is described by a
k⇥d. We assume that each structure Xi is normally distributed and is observed in an arbitrary coordinate system
(Dryden and Mardia, 1998; Goodall, 1991; Goodall and Mardia, 1993). Heterogeneous variances and correlations
among the landmarks are described by a k⇥k covariance matrix � (isotropic in the d-dimensional space). Hence
each Xi can be considered to be an arbitrarily scaled, rotated, and translated zero-mean normal matrix displacement
Ei ⇤ Nk,d(0,�, I) of the mean structure M,

Xi =
1

�i
(M+Ei)R

⇥
i � 1kt

⇥
i (1)

where �i is a global scale factor, Ri is a d⇥d orthogonal rotation matrix, ti is a d⇥1 column vector for the
translational offset, and 1k denotes the k⇥1 column vector of ones.

1.2 A Procrustes matrix normal likelihood function

The full joint likelihood function for the model given in (1) is obtained from a matrix normal distribution Dawid
(1981). Define

Yi = (�iXi + 1kt
⇥
i)Ri

then the PDF for the likelihood function is:

p (X|�,M,R, t,�) = C exp
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1.3 A Bayesian extension

The likelihood analysis described above does not provide ready estimates of the uncertainty in the estimated param-
eters. In an earlier presentation at this conference (Theobald, 2009), a Bayesian extension was described allowing
for the incorporation of other prior data. For the Bayesian analysis we assume that �,M,R, t,� are all a priori
independent, so that

p (�,M,R, t,�|X) ⌅ p (X|�,M,R, t,�) p (�) p (M) p (R) p (t) p (�). (4)

We will also assume a hierarchical prior for �:

p (�) ⌅ p (�|⇥, n) p (⇥). (5)

p (�,M,R, t,�|X) ⌅ p (X|�,M,R, t,�) p (�) p (M) p (R) p (t) p (�|⇥, n) p (⇥). (6)
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Benefits of Bayes

• Complete distribution of parameters, including uncertainty	


• Uses all relevant information, including prior info	


• Complex models, marginal distributions for “nuisance parameters”	


• Solutions for underdetermined and “problematic” models	


• Bayesian solutions are exact for finite sample sizes (unlike ML)

of likelihood confidence intervals is obscure and controversial. This problem is greatly exacerbated
with multi-parameter distributions, the norm for complex models (see below) [4–6].

(b) Bayesian methodology can incorporate pertinent prior information, in addition to the information
given by the data at hand. Classical methods, including the method of maximum likelihood, explicitly
avoid using external information to influence parameter inference. However, prior information can be
extremely important. In practice, the experimentalist always has useful prior information available,
which may be as simple as knowing that certain parameter values are a priori extremely unlikely (e.g.,
the parameter may be bounded). Moreover, previous experiments in different systems or with different
experimental setups may provide useful information for constraining realistic parameter values in the
present experiment. From a Bayesian perspective, all relevant information should be used in data
analysis.

(c) Bayesian methodology elegantly handles complex, multi-parameter models without invoking ad hoc
techniques. Classical statistics has a wide assortment of pragmatic methods for dealing with “nuisance
parameters”, none of which follow from fundamental theoretical statistical principles, leading to
practical drawbacks. In likelihood analysis of multi-parameter models, for instance, confidence
intervals based on the conditional likelihood function cannot account for the uncertainty in other
parameters (known as the problem of “nuisance parameters”), resulting in confidence intervals that
are overly optimistic [4–6].

In contrast, in Bayesian analyses nuisance parameters can simply be integrated out to give a marginal
distribution of a parameter that is independent of the others. For example, if we have a two-parameter
model with a two-parameter likelihood function p(x|�,⇥,M), we can calculate the marginal posterior
distribution of only one of the parameters:

p(�|x,M) =

�

�
p(�,⇥|x,M) d⇥ =

1

p(x|M)

�

�
p(x|�,⇥,M) p(�|M) p(⇥|M) d⇥ (A3)

The uncertainty in other parameters (here ⇥) is inherently taken into account since we integrate over
all possible values of the unwanted parameter.

(d) Bayesian methods provide solutions for underdetermined systems, which are generally intractable
using classical methods. For example, in extreme cases we may have fewer data points than
parameters, or we may have two perfectly correlated parameters. As long as valid priors are specified,
Bayes’ theorem provides a valid posterior distribution, which may have large uncertainty yet still
retain useful information about the unknown parameters.

Prior distributions for the parameters

A critical component of Bayesian analysis is the choice of the prior distribution. Historically the prior has
been an object of criticism, due to the fact that the prior has the potential to subjectively bias parameter
inference. In practice, the choice of prior is often only an academic issue – in most cases, if the prior is
not pathologically extreme even moderate amounts of data will “wipe out” the prior, since the likelihood
function will dominate the calculation of the posterior. For objective scientific work, however, there is a
need for “reference” priors that represent a prior state of maximal ignorance (or minimum information)
about parameter values – priors that let the data speak as loudly as possible, even in the face of moderate
amounts of data. Theoretical developments in the latter half of the 20th century have largely answered
these criticisms, and several objective options are available for Bayesian priors that have a strong theoretical
basis.
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Bayes Theorem, easy version

Appendix A: Bayesian analysis of Ba2+ block

General features of Bayesian analysis

The object of Bayesian inference is to provide a probability distribution for the parameters of a model,
given the observed data [1–3]. This contrasts with classical (frequentist) statistics, which is concerned
with the single optimal point estimate of an unknown parameter using an optimization criterion (e.g., the
“best linear unbiased” estimate, a chi-squared estimate, or a maximum likelihood estimate). The primary
methodological difference between Bayesian and classical statistics is that Bayesian statistics treats model
parameters as random variables that can be described by a probability distribution. Classical statistics, on
the other hand, allows that only data may have a probability distribution – model parameters are fixed, albeit
unknown, constants.

The foundation of Bayesian statistics is Bayes’ theorem, which follows directly from the axioms of
probability and the definition of conditional probability. Bayes’ theorem allows us to move from a
probability distribution of the data x to a probability distribution of the parameters �:

p(�|x,M) =
p(x|�,M) p(�|M)

p(x|M)
(A1)

p(�|x,M) � p(x|�,M) p(�|M) (A2)

In this version of Bayes’ theorem, p(x|�,M) is the familiar likelihood function, the conditional probability
distribution of the data x given particular values for the parameters � of a stochastic model M . For example,
M may be a single exponential probability distribution function for the dwell times of a channel in its closed
state, where x would be a vector of observed dwell-times and � would be the time constant. In the method
of maximum likelihood, this same likelihood function is maximized over the parameters �, to provide the
maximum likelihood estimate �̂ that predicts the observed data with the highest probability.

Bayesian statistics adds two important elements to the analysis of data, the prior distribution of the
parameters p(�|M) and the posterior distribution of the parameters p(�|x,M). The prior distribution of
the parameters (or simply “the prior”) can be thought of as the distribution describing our beliefs about the
values of the parameters before the data is observed. Similarly, the posterior distribution of the parameters
(“the posterior”) is the distribution representing what we should believe about the parameters after observing
the data at hand. In principle, given a likelihood function for the data and a prior for the parameters, the
posterior distribution of the parameters is uniquely specified and the Bayesian analysis is complete.

Note that, in Bayes’ theorem the p(x|M) need not be specified explicitly, as it can be calculated from the
likelihood and the prior:

p(x|M) =

�
p(x|�,M) p(�|M) d� (A3)

This is a consequence of the axioms of probability – the posterior distribution p(�|x,M), as a proper
probability distribution, must be normalized so that it integrates to one. In fact, the marginal probability of
the data, p(x|M), is a function of only the observed (fixed) data, and hence it is simply a scalar normalizing
constant.

In the simplest cases the posterior distribution can be found analytically. However, with more complex
models (e.g., multi-exponentials) analytical expressions for the posterior cannot be found easily or do not
exist, and then we must resort to numerical algorithms to approximate the posterior distribution. Two
commonly used numerical techniques are the Gibbs sampler and Markov Chain Monte Carlo (MCMC),
both of which have their roots in statistical physics (MCMC will be discussed in more detail below).
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1 Methods

1.1 A matrix normal probability model for the macromolecular superposition problem

Consider n structures (Xi, i = 1 . . . n), each with k labelled landmarks, where each structure is described by a
k⇥d. We assume that each structure Xi is normally distributed and is observed in an arbitrary coordinate system
(Dryden and Mardia, 1998; Goodall, 1991; Goodall and Mardia, 1993). Heterogeneous variances and correlations
among the landmarks are described by a k⇥k covariance matrix � (isotropic in the d-dimensional space). Hence
each Xi can be considered to be an arbitrarily scaled, rotated, and translated zero-mean normal matrix displacement
Ei ⇤ Nk,d(0,�, I) of the mean structure M,

Xi =
1
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(M+Ei)R

⇥
i � 1kt

⇥
i (1)

where �i is a global scale factor, Ri is a d⇥d orthogonal rotation matrix, ti is a d⇥1 column vector for the
translational offset, and 1k denotes the k⇥1 column vector of ones.

1.2 A Procrustes matrix normal likelihood function

The full joint likelihood function for the model given in (1) is obtained from a matrix normal distribution Dawid
(1981). Define

Yi = (�iXi + 1kt
⇥
i)Ri

then the PDF for the likelihood function is:
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1.3 A Bayesian extension

The likelihood analysis described above does not provide ready estimates of the uncertainty in the estimated param-
eters. In an earlier presentation at this conference (Theobald, 2009), a Bayesian extension was described allowing
for the incorporation of other prior data. For the Bayesian analysis we assume that �,M,R, t,� are all a priori
independent, so that

p (�,M,R, t,�|X) ⌅ p (X|�,M,R, t,�) p (�) p (M) p (R) p (t) p (�). (4)

We will also assume a hierarchical prior for �:

p (�) ⌅ p (�|⇥, n) p (⇥). (5)

p (�,M,R, t,�|X) ⌅ p (X|�,M,R, t,�) p (�) p (M) p (R) p (t) p (�|⇥, n) p (⇥). (6)
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Conditional distribution for the mean:	


Matrix normal

1.3.1 Matrix normal for Mean M

Define the matrix normal distribution, for p�q matrix variate V, given a location matrix µ and p�p scale matrix
⇥, V ⇥ Np,q(µ,⇥, Iq):

p (V|µ,⇥) = (2⇥)�
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For matrix normal prior on the mean, with location matrix T and isotropic, diagonal scale matrix ⇧I:
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1.3.2 Multivariate normal for translations

Conditional distribution of the translations t, assuming RiM⇥⇤�11k = 0. This is a multivariate normal distribu-
tion,

ti ⇥ Nd,1(⇤i, �i) (20)
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A matrix normal distribution -- with uniform reference prior, it is centered 
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3 Mean

Conditional distribution of the mean M, given a flat prior (p (M) / C).
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1 Methods

1.1 A matrix normal probability model for the macromolecular superposition problem

Consider n structures (Xi, i = 1 . . . n), each with k labelled landmarks, where each structure is described by a
k⇥d. We assume that each structure Xi is normally distributed and is observed in an arbitrary coordinate system
(Dryden and Mardia, 1998; Goodall, 1991; Goodall and Mardia, 1993). Heterogeneous variances and correlations
among the landmarks are described by a k⇥k covariance matrix � (isotropic in the d-dimensional space). Hence
each Xi can be considered to be an arbitrarily scaled, rotated, and translated zero-mean normal matrix displacement
Ei ⇤ Nk,d(0,�, I) of the mean structure M,

Xi =
1

�i
(M+Ei)R

⇥
i � 1kt

⇥
i (1)

where �i is a global scale factor, Ri is a d⇥d orthogonal rotation matrix, ti is a d⇥1 column vector for the
translational offset, and 1k denotes the k⇥1 column vector of ones.

1.2 A Procrustes matrix normal likelihood function

The full joint likelihood function for the model given in (1) is obtained from a matrix normal distribution Dawid
(1981). Define
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1.3 A Bayesian extension

The likelihood analysis described above does not provide ready estimates of the uncertainty in the estimated param-
eters. In an earlier presentation at this conference (Theobald, 2009), a Bayesian extension was described allowing
for the incorporation of other prior data. For the Bayesian analysis we assume that �,M,R, t,� are all a priori
independent, so that

p (�,M,R, t,�|X) ⌅ p (X|�,M,R, t,�) p (�) p (M) p (R) p (t) p (�). (4)

We will also assume a hierarchical prior for �:

p (�) ⌅ p (�|⇥, n) p (⇥). (5)

p (�,M,R, t,�|X) ⌅ p (X|�,M,R, t,�) p (�) p (M) p (R) p (t) p (�|⇥, n) p (⇥). (6)
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Conditional distribution for translations:	


Multivariate normal

1.3.1 Matrix normal for Mean M
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1.3.2 Multivariate normal for translations

Conditional distribution of the translations t, assuming RiM⇥⇤�11k = 0. This is a multivariate normal distribu-
tion,
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1.3.3 Rotations

Conditional distribution of the rotations Ri, given a proper uniform prior (p (Ri) ⇤ C), is a matrix von Mises-
Fisher distribution,
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1.3.4 Isotropic covariance matrix

Conditional distribution of an isotropic �iso = ⌃I, given a reference prior (p (⌃) ⇤ 1
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Conditional scale distribution: Halfnormal-gamma

1.3.5 Inverse Wishart for ⇥

For p⇥p square matrix variate V, with scale matrix �, and m degrees of freedom (m > p � 1 for invertible V),
the inverse Wishart distribution V ⇤ IW(�,m):

p (V|m,�) =
|�|

m
2 |V|�(m+p+1)

2
mp
2 �p
�
m
2

⇥ e�
1
2 tr (�V�1) (34)

The conditional distribution of ⇥ is then:

⇥ ⇤ IW (⇤+ S, k(n+ 2)) (35)

where

S =
n 

i

tr
⇤
[Yi �M]0[Yi �M]

⌅
(36)

(37)

Yi = (�iXi + 1kt
0
i)Ri

and we assume an isotropic prior scale matrix:

⇤ = ⌅I (38)

1.3.6 Gamma distribution for inverse Wishart hyperparameter ⌅

The gamma distribution for variate v, scale parameter ⇧, and shape parameter m, v ⇤ G(⇧,m), is defined as

p (v|⇧,m) =
xm�1

⇧m �(m)
e�

x
⇥ (39)

For gamma prior on ⌅, with scale ⇤ and DOF p (usually we take p = 2), the conditional distribution of the
hyperparameter ⌅ is:

⌅ ⇤ G

⌥
2

tr
�
⇥�1 + 2

⇥

⇥ , k
2 + 2p

2

�
(40)

p = 1 for exponential hyperprior on ⌅,
p = 2 for maxent hyperprior constrained so that p (⌅ = 0) = 0.
⇤ must be chosen carefully, e.g. as the expected variance per landmark. The scale parameter ⇤ of the hyperprior is
the most important prior component in the analysis – a Jeffrey’s prior results in an improper posterior, even though
the conditional is proper.

1.3.7 Halfnormal-gamma conditional probability distribution for the scale factors �

The conditional probability density function for �i, using a conjugate prior, has the form:

p (�i|X,⇥,M, ti,R) = C�i
m�1 exp

⌦
�⌥i

2
�i

2 + ⇥i�i
↵
, (41)

C =
2⌃

�m
2

i e
� �2i

8⇤i

�(m)D�m

⇧
�ip
2⇤i

⌃ , (42)

4

1.3.5 Inverse Wishart for ⇥

For p⇥p square matrix variate V, with scale matrix �, and m degrees of freedom (m > p � 1 for invertible V),
the inverse Wishart distribution V ⇤ IW(�,m):

p (V|m,�) =
|�|

m
2 |V|�(m+p+1)

2
mp
2 �p
�
m
2

⇥ e�
1
2 tr (�V�1) (34)

The conditional distribution of ⇥ is then:

⇥ ⇤ IW (⇤+ S, k(n+ 2)) (35)

where

S =
n 

i

tr
⇤
[Yi �M]0[Yi �M]

⌅
(36)

(37)

Yi = (�iXi + 1kt
0
i)Ri

and we assume an isotropic prior scale matrix:

⇤ = ⌅I (38)

1.3.6 Gamma distribution for inverse Wishart hyperparameter ⌅

The gamma distribution for variate v, scale parameter ⇧, and shape parameter m, v ⇤ G(⇧,m), is defined as

p (v|⇧,m) =
xm�1

⇧m �(m)
e�

x
⇥ (39)

For gamma prior on ⌅, with scale ⇤ and DOF p (usually we take p = 2), the conditional distribution of the
hyperparameter ⌅ is:

⌅ ⇤ G

⌥
2

tr
�
⇥�1 + 2

⇥

⇥ , k
2 + 2p

2

�
(40)

p = 1 for exponential hyperprior on ⌅,
p = 2 for maxent hyperprior constrained so that p (⌅ = 0) = 0.
⇤ must be chosen carefully, e.g. as the expected variance per landmark. The scale parameter ⇤ of the hyperprior is
the most important prior component in the analysis – a Jeffrey’s prior results in an improper posterior, even though
the conditional is proper.

1.3.7 Halfnormal-gamma conditional probability distribution for the scale factors �

The conditional probability density function for �i, using a conjugate prior, has the form:

p (�i|X,⇥,M, ti,R) = C�i
m�1 exp

⌦
�⌥i

2
�i

2 + ⇥i�i
↵
, (41)

C =
2⌃

�m
2

i e
� �2i

8⇤i

�(m)D�m

⇧
�ip
2⇤i

⌃ , (42)

4

where Dp(z) is a “parabolic cylinder function”, a type of confluent hypergeometric function, defined in Gradshteyn
and Ryzhik p 1028, section 9.24-9.25 (also described as the Whitaker function in Chapter 19 of Abramowitz and
Stegun). This distribution (halfnormal-gamma) has been studied in Mardia et al. (2011), where the isotropic single
global scaling case (pairwise superposition) has been treated as well.
A conjugate prior for the halfnormal-gamma is the gamma distribution (and the exponential distribution as a simple
maximum entropy case). Using an exponential prior with E(�) = 1 gives

�i ⇥ HNG(⇤i, ⇥i,m) (43)
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and X̌i is a centered structure

X̌i = Xi + 1kt
⇥
i (47)
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Fig 8. The halfnormal-gamma distribution plotted for two values of r and δ, together with
the corresponding normal approximation. Here we have taken φ = 1.
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Conditional distribution for rotations:	
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⌃
(26)

Ri ⇥ MF(Ai) (27)

where

Ai = M⇥��1X̌i (28)

Aiso,i =
1

⌃
M⇥X̌i (29)

1.3.4 Isotropic covariance matrix

Conditional distribution of an isotropic �iso = ⌃I, given a reference prior (p (⌃) ⇤ 1
� ).

p (⌃|X,�,M,R, t,�) ⇤ ⌃�( 3nk
2 +1) exp

⌥
� 1
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⇤
[Yi �M]⇥[Yi �M]

⌅
�

(30)

which is an inverse gamma distribution IG(⌅,m),

p (v|⌅,m) =
⌅m
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�
v (31)

The conditional distribution of ⌃ is then:
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⌃
(32)

where

S =
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tr
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[Yi �M]⇥[Yi �M]
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3

Matrix Fisher centered on the ML estimate (using proper, 
uniform prior on rotations)	



Sampled using: 	



(1) hybrid Gibbs/Metropolis-Hastings algorithm of Green 
and Mardia, or 	



(2) Gibbs using Habeck algorithm, or	



(3) Kent’s BACG A/R algorithm

Green and Mardia (2006) Biometrika 93:235.	


Habeck (2009) Comput Stat (2009) 24:719.	


Kent, Ganeiber, and Mardia (2013) arXiv:1310.8110



Gibbs/MCMC sampling for nonisotropic scaling

1.3.8 Approximating the joint posterior distribution via hybrid Gibbs/MCMC sampling

We first initialize by performing a conventional least-squares superposition (general procrustes analysis).
For an isotropic covariance structure � = ⌃I, cycle over the following steps:

1.

⌃ � IG

⇤
S,

3nk

2

⌅
(48)

2.

M � Nk,d(B,⇤, Id) (49)

After the mean variate is generated, it is centered such that M⇥��11k = 0. The entire superposition is also
translated by the same vector. This step is not necessary, but it simplifies some of the subsequent calculations
and is convenient for displaying the samples. As long as the entire superposition (all structures) in the current
iteration are translated by the same amount, the operation is benign.

3. For each structure

ti � Nd,1(⇧i, ⇤i) (50)

4. For each structure

Ri � MF(Ai) (51)

5. For each structure

�i � HNG(⌥i, ⇥i,m) (52)

For a non-isotropic covariance matrix �, cycle over the following steps:

1.

⌅ � G

⇧
k2 + 2p

2
,

2

tr
�
��1 + 2

�

⇥
⌃

(53)

2.

� � IW (⇥+ S, k(n+ 2)) (54)

3.

M � Nk,d(B,⇤, Id) (55)

Center the superposition such that M⇥��11k = 0.

4. For each structure

ti � Nd,1(⇧i, ⇤i) (56)

5. For each structure

Ri � MF(Ai) (57)

6. For each structure

�i � HNG(⌥i, ⇥i,m) (58)
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Initialize chain with ordinary LS superposition



Gibbs/MCMC results for nonisotropic protein 
superposition, no scaling

Bayes: 10,000 subsamples, 1,000,000 generations Regular ML

2sdf: cytokine stromal cell-derived factor-1 (SDF-1)	



67 aa, 30 NMR models



Ln Likelihood across samples



Posterior translations, structure 20



Posterior rotation angles, structure 20



40 hominoid crania, 30 landmarks, w/scaling

Data set kindly supplied by Karen Baab, SUNY Stony Brook

27 modern humans	


9 Homo erectus	


1 Homo habilis	


1 Neanderthal	



2 Australopithecus bosiei



Isotropic superposition: Scaling comparisons
LS, no scaling LS, scaling

ML, scaling Bayes, scaling



Bayesian superpositions, with and without scaling

Nonisotropic,	


no scaling

Nonisotropic,	


scaling
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Bayesian superpositions, with and without scaling

Isotropic, scaling

Isotropic, no scaling Nonisotropic, no scaling

Nonisotropic, scaling



SCOP: Structural Classification Of 
Proteins	



http://scop.berkeley.edu/

Protein Folds and Structural Taxonomy

FOLD ≡ specific arrangement of 
secondary structure elements	



& specific connectivity

http://scop.berkeley.edu


Fold growth in the PDB

~1,300 different protein folds



Frequency of novel folds is decreasing

Today’s chance of new fold: 10-3 to 10-4
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This is the “Bayesian version” of 
Generalized Procrustes Analysis

Initialize chain with ordinary LS superposition



Conditional distribution for 
isotropic covariance matrix:	



Inverse Gamma

An inverse gamma distribution centered with scale parameter equal to the 
sum of squares

where

⇧i = �
1⇥k�

�1Xi

1⇥k�
�11k

(21)
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⇥2
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1.3.3 Rotations

Conditional distribution of the rotations Ri, given a proper uniform prior (p (Ri) ⇤ C), is a matrix von Mises-
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� ).
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which is an inverse gamma distribution IG(⌅,m),

p (v|⌅,m) =
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The conditional distribution of ⌃ is then:
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Membrane protein folds: Same story



Isotropic vs nonisotropic

Covariance matrix

ML superposition solutions

In the following we briefly give the ML solutions for each of the unknown parameters of the superposition log-
likelihood equation from above.
Each observed structure Xi must be translated to its row-weighted centroid:

X̌i = Xi + 1K t̂i (124)

where t̂i is the ML estimate of the translation:

t̂i = � 1⇥K⇥�1Xi

1⇥K⇥�11K

t̂i = � 1⇥KXi

1⇥K1K

The optimal rotations are calculated using a singular value decomposition (SVD). Let the SVD of an arbitrary
matrix D be U�V⇥. Then, the ML rotations R̂i are estimated by

M̂⇥⇥̂�1X̌i = U�V⇥

R̂i = VPU⇥ (125)

M̂⇥X̌i = U�V⇥

R̂i = VPU⇥ (126)

The mean structure is estimated as the arithmetic average of the optimally translated and rotated structures:

M̂ =
1

N

N⇤

i

X̌iRi (127)

Finally, the ML estimate of the atomic covariance matrix ⇥̂I� is given by:

⇥̂I� =
3N

3N + 2(⇥ + 1)

�
2�

3N
I+ ⇥̂U

⇥
(128)

⇥̂I� =

�
3N

3N + 3

⇥�
⇤

3N
I+ ⇥̂U

⇥
(129)

where the unconstrained ML estimate of the covariance matrix ⇥̂U is:

⇥̂U =
1

3N

N⇤

i

(X̌iRi � M̂)(X̌iRi � M̂)⇥ (130)

13

No correlations, all variances equal = “isotropic”
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Isotropic ML is equivalent to ordinary least squares

Unequal variances and/or correlations = “nonisotropic”	



An arbitrary covariance matrix



Posterior distribution of covariance matrix and its 
hyperparameter λ



Posterior distribution of mean scale factor



Future directions

•Better sampling for halfnormal-gamma	


•MCMCMC (heated chains)	


•Unlabeled problems (match matrix)	


•Incorporate sequence information	


•Evolutionary models of structural change



Some folds are much more populated

11,211 domains (no similarity to anything else)	


1194 folds	



first 12 folds are over 25% of domains	


first 56 folds are over 50% of domains



Superfolds



Superfolds

2:TIM barrel (373)

3: ferredoxin (347)

4: homeodomain (335)

5: P-loop (252)

6: Rossmann (221)

7: OB-fold (158)

8: flavodoxin (150)

9: SH3 (137)

1: Immunoglobulin (402)

10: thioredoxin (135)

11: ribonuclease H-like (130)

12: knottins (124)



The TIM barrel superfold

• 1992 different TIM domains	


• 373 with E > 0.01	


• 158 with E > 10 (!!)

• eight α-β repeats	


• right handed connectivity





Bayes: LS vs ML vs Bayes scaling, isotropic
BAYESIAN SIMILARITY SHAPE 25

probability. The corresponding length ratios of these matches are shown in

the 5th column of Table 5. Here, it is evident that this match requires quite

a different scaling, so it is not surprising that a method with only one global

scale factor is unable to find all these matches simultaneously with a high

probability. The posterior median for c is 1.18 with 95% interval (1.07, 1.35).

Fig 7. Left: 2VLWA00. Right: 1M9ZA00.

Match x y prob ||x||/||y||
1 1 1 0.941 1.29
2 3 5 0.939 1.47
3 4 6 0.925 1.19
4 2 4 0.915 1.11
5 5 9 0.062 0.81

Table 5

Matches for 2VLW (X) and 1M9Z (Y ).

5. Discussion. In this paper we have presented a Bayesian model for

the pairwise alignment of two point configurations under full similarity trans-

formation. We note that the model uses one universal scale factor through-



EM for smallest variance from an 
inverse gamma distribution

§ Must be solved simultaneously

expected inverse of the smallest variances

Scalar Gaussian:
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Likelihood superpositioning 13
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Where c is the inverse of the smallest observed eigenvalue, and �(a, x) is
the (unnormalized) upper incomplete gamma function:

�(a, x) =
⌃ ⇥

x
ta�1e�t dt (21)

for a real and x � 0. In subsequent iterations, starting values in the Newton
method are given by the parameter values from the previous iteration.

2. Modify the sample eigenvalues: Modify the sample eigenvalues ac-
cording to Equation 18.
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Likelihood function including scaling parameters

Full Bayesian analysis of the generalized non-isotropic Procrustes
problem with scaling

Douglas L. Theobald1 and Kanti V. Mardia2

1 Department of Biochemistry, Brandeis University
2 Department of Statistics, University of Leeds

1 Methods

1.1 A matrix normal probability model for the macromolecular superposition problem

Consider n structures (Xi, i = 1 . . . n), each with k labelled landmarks, where each structure is described by a
k⇥d. We assume that each structure Xi is normally distributed and is observed in an arbitrary coordinate system
(Dryden and Mardia, 1998; Goodall, 1991; Goodall and Mardia, 1993). Heterogeneous variances and correlations
among the landmarks are described by a k⇥k covariance matrix � (isotropic in the d-dimensional space). Hence
each Xi can be considered to be an arbitrarily scaled, rotated, and translated zero-mean normal matrix displacement
Ei ⇤ Nk,d(0,�, I) of the mean structure M,

Xi =
1

�i
(M+Ei)R

⇥
i � 1kt

⇥
i (1)

where �i is a global scale factor, Ri is a d⇥d orthogonal rotation matrix, ti is a d⇥1 column vector for the
translational offset, and 1k denotes the k⇥1 column vector of ones.

1.2 A Procrustes matrix normal likelihood function

The full joint likelihood function for the model given in (1) is obtained from a matrix normal distribution Dawid
(1981). Define

Yi = (�iXi + 1kt
⇥
i)Ri

then the PDF for the likelihood function is:

p (X|�,M,R, t,�) = C exp

⇤
�1

2

n⇧

i

tr
�
[Yi �M]⇥��1[Yi �M]

⇥
⌅
, (2)

with normalization constant:

C = (2⇥)�
kdn
2

⇤
n⌃

i

�kd
i

⌅
|�|�

dn
2 . (3)

1.3 A Bayesian extension

The likelihood analysis described above does not provide ready estimates of the uncertainty in the estimated param-
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7 Inverse Wishart prior for a diagonal covariance matrix (multivariate scaled
inverse chi square)
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where

A = S + ⇥I (61)
k = 3N + n (62)
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7.2 Conditional probability of the variance hyperparameter �

The “conventional” reference prior (p (⇥) ⇥ 1
�a ) leads to an improper posterior even though the conditional prob-

ability is proper, so we adopt a vague proper conjugate prior on ⇥ (a scaled gamma).
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4.4 Isotropic covariance matrix
The conditional distribution of an isotropic covariance matrix (�iso = ⇥I), given a reference prior
(p (⇥) ⇥ 1

�), is:
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which is an inverse gamma distribution. This solution corresponds to the Bayesian version of the
traditional OLS superposition solution.

4.5 A Diagonal Inverse Wishart prior for a diagonal covariance matrix (mul-
tivariate scaled inverse chi square)

In the following we assume the covariance matrix is diagonal (� diagonal):
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4.6 Conditional probability for the covariance matrix �

If we further assume that the hyperparameter ⇥ is isotropic (i.e., ⇥ = ⇥I), then we have a simple
expression for the conditional distribution of the covariance matrix:
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This is simply another multivariate scaled inverse chi-square distribution.
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which is a gamma distribution (or a scaled chi-square).
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�a ) leads to an im-

proper posterior, so we adopt a vague proper conjugate prior on ⇥ (a scaled chi-square with param-
eters �, m):
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which is a gamma distribution (or a scaled chi-square).

4

Non-isotropic, diagonal, covariance matrix
Assume a conjugate hierarchical prior for covariance matrix, a 
diagonal, isotropic inverse Wishart distribution

Must assume a proper prior for the hyper-parameter ϕ, here a 
conjugate gamma distribution



Bayesian MAP superposition solutions

Nonisotropic covariance matrix

Mean structure

ML superposition solutions

In the following we briefly give the ML solutions for each of the unknown parameters of the superposition log-
likelihood equation from above.

Each observed structure Xi must be translated to its row-weighted centroid:

X̌i = Xi + 1K t̂i (45)

where t̂i is the ML estimate of the translation:

t̂i = � 1⇥K⇥�1Xi

1⇥K⇥�11K

The optimal rotations are calculated using a singular value decomposition (SVD). Let the SVD of an arbitrary
matrix D be U�V⇥. Then, the ML rotations R̂i are estimated by

M̂⇥⇥̂�1X̌i = U�V⇥

R̂i = VPU⇥ (46)

The mean structure is estimated as the arithmetic average of the optimally translated and rotated structures:

M̂ =
1
N

N⇤

i

X̌iRi (47)

Finally, the ML estimate of the atomic covariance matrix ⇥̂I� is given by:

⇥̂I� =
3N

3N + 2(⇥ + 1)

�
2�

3N
I + ⇥̂U

⇥
(48)

where the unconstrained ML estimate of the covariance matrix ⇥̂U is:

⇥̂U =
1

3N

N⇤

i

(X̌iRi � M̂)(X̌iRi � M̂)⇥ (49)
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Translations

ML superposition solutions

In the following we briefly give the ML solutions for each of the unknown parameters of the superposition log-
likelihood equation from above.
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5

Rotations - found with Singular 
Value Decomposition

6 Isotropic covariance matrix

Conditional distribution of an isotropic �iso = ⇥I, given a reference prior (p (⇥) ⇥
1
⇥ ).

p (�iso|X,�,M,R, t,�) = p (⇥|X,�,M,R, t,�) ⇥ ⇥�( 3NK
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which is an inverse gamma distribution,
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Thus, the expected ⇥ is
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where

� =
2

tr (��1)
(56)

k =
nK

2
(57)

or a scaled chi-square:
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m = nK (60)

Hence, the expected ⇥:
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Maximum posterior inference of ⇥:
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7 Inverse Wishart prior for a diagonal covariance matrix
(multivariate scaled inverse chi square)

In the following we assume the covariance matrix is diagonal: � diagonal.

p (�|⇥, n,K) =
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7.1 Conditional probability for the covariance matrix �
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(45)
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Isotropic covariance matrix



⇥ =
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N

� (21)

⇥ =
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N
I (22)

B =
1
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Yi (23)

4 Translations

Conditional distribution of the translations t, given a flat prior (p (t) ⇥ C).
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assuming RiM⇥��11K = 0. This is a multivariate normal distribution,
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5 Rotations

Conditional distribution of the rotations Ri, given a proper uniform prior (p (Ri) ⇥ C).
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which is a matrix von Mises-Fisher distribution,
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Conditional distributions: The translations

4.4 Isotropic covariance matrix
The conditional distribution of an isotropic covariance matrix (�iso = ⇥I), given a reference prior
(p (⇥) ⇥ 1

�), is:

p (⇥|X,�,M,R, t) ⇥ ⇥�( 3NK
2 +1) exp

⌥
� 1

2⇥

N 

i

tr {[Yi �M]⇥[Yi �M]}
�

(8)

which is an inverse gamma distribution. This solution corresponds to the Bayesian version of the
traditional OLS superposition solution.

4.5 A Diagonal Inverse Wishart prior for a diagonal covariance matrix (mul-
tivariate scaled inverse chi square)

In the following we assume the covariance matrix is diagonal (� diagonal):
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(9)

4.6 Conditional probability for the covariance matrix �

If we further assume that the hyperparameter ⇥ is isotropic (i.e., ⇥ = ⇥I), then we have a simple
expression for the conditional distribution of the covariance matrix:
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This is simply another multivariate scaled inverse chi-square distribution.

4.7 Conditional probability of the variance hyperparameter ⇥

The “conventional” reference prior for the variance hyperparameter (p (⇥) ⇥ 1
�a ) leads to an im-

proper posterior, so we adopt a vague proper conjugate prior on ⇥ (a scaled chi-square with param-
eters �, m):
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which is a gamma distribution (or a scaled chi-square).

4

A multivariate normal distribution centered on the the ML 
estimate (the weighted centroid)

Assume uniform improper prior on ti
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6 Isotropic covariance matrix

Conditional distribution of an isotropic �iso = ⇥I, given a reference prior (p (⇥) ⇥ 1
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4

Conditional distributions: The rotations

A matrix Fisher-von Mises centered on the ML estimate!
Can be sampled using hybrid Gibbs/Metropolis-
Hastings algorithm of Green and Mardia

Assume uniform proper prior on Ri

P. Green and K.V. Mardia (2006) “Bayesian alignment using hierarchical models, with applications in protein 
bioinformatics.” Biometrika 93(2):235–254 
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Posterior mode solution for inverse Wishart 
priors on the covariance matrix

MAP solution:  
Another “shrunken” 
covariance matrix:

t̂i = � 1⇥KXi

1⇥K1K

The optimal rotations are calculated using a singular value decomposition (SVD). Let the SVD of an arbitrary
matrix D be U�V⇥. Then, the ML rotations R̂i are estimated by

M̂⇥⇥̂�1X̌i = U�V⇥

R̂i = VPU⇥ (45)

M̂⇥X̌i = U�V⇥

R̂i = VPU⇥ (46)

The mean structure is estimated as the arithmetic average of the optimally translated and rotated structures:

M̂ =
1
N

N⌥
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Finally, the ML estimate of the atomic covariance matrix ⇥̂I� is given by:
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where the unconstrained ML estimate of the covariance matrix ⇥̂U is:
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Scalar Gaussian:
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Define the sum of squares: S =
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Assume that ⇥,�,M,R, t are all independent.

p (⇥,�,M,R, t|X) ⇥ p (X|⇥,�,M,R, t) p (⇥,�,M,R, t) (9)
⇥ p (X|⇥,�,M,R, t) p (⇥) p (�) p (M) p (R) p (t) (10)

3 Inverse Wishart prior for a diagonal covariance matrix (multivariate scaled
inverse chi square)

In the following we assume the covariance matrix is diagonal: ⇥ diagonal.
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Examples of 
Priors:

Crystallographic B-factors NMR order parameters

diagonal inverse 
Wishart distribution

Define the sum of squares: S =
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Macromolecular structures as matrices 

x      y      z

atoms

Structure = K x 3 matrix, K rows of atoms, 3 axes

A protein PDB file:



Classic superposition method:!
Least-squares

Pairwise superposition

X is the structure to be superpositioned!

R is a 3×3 rotation matrix (orthogonal)!

Y is the target structure
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F. Boas (1905) “The horizontal plane of the skull and the general problem of the comparison of variable forms.” 
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J. von Neumann (1937) “Some matrix-inequalities and metrization of matrix-spaces.” Tomsk Univ Rev 1:286-300!
B.F. Green (1952) “The orthogonal approximation of an oblique structure in factor analysis.” Psychometrika 17:429!
W. Kabsch (1978) “A discussion of the solution for the best rotation to relate two sets of vectors.” Acta Cryst A34:827



Principal Components Analysis (PCA): 
Summarize the covariance matrix

§ PCA: a method to extract the dominant patterns of correlation 
found in data.!

§ Principal component (PC): each major mode of correlation!

§ Multiple PCs, ranked most important to least.!

§ Each PC is a vector that assigns a measure of correlation to each 
atom in a structure

Covariance/correlation matrices are 
information dense



Benefits of Bayes

•Complete distribution of parameters	


•Uses all relevant information, including prior	


•Complex models, marginal distributions for “nuisance parameters”	


•Solutions for underdetermined and “problematic” models	


•Bayes solutions are exact for finite sample sizes

Appendix A: Bayesian analysis of Ba2+ block

General features of Bayesian analysis

The object of Bayesian inference is to provide a probability distribution for the parameters of a model,
given the observed data [1–3]. This contrasts with classical (frequentist) statistics, which is concerned
with the single optimal point estimate of an unknown parameter using an optimization criterion (e.g., the
“best linear unbiased” estimate, a chi-squared estimate, or a maximum likelihood estimate). The primary
methodological difference between Bayesian and classical statistics is that Bayesian statistics treats model
parameters as random variables that can be described by a probability distribution. Classical statistics, on
the other hand, allows that only data may have a probability distribution – model parameters are fixed, albeit
unknown, constants.

The foundation of Bayesian statistics is Bayes’ theorem, which follows directly from the axioms of
probability and the definition of conditional probability. Bayes’ theorem allows us to move from a
probability distribution of the data x to a probability distribution of the parameters �:

p(�|x,M) =
p(x|�,M) p(�|M)

p(x|M)
(A1)

In this version of Bayes’ theorem, p(x|�,M) is the familiar likelihood function, the conditional probability
distribution of the data x given particular values for the parameters � of a stochastic model M . For example,
M may be a single exponential probability distribution function for the dwell times of a channel in its closed
state, where x would be a vector of observed dwell-times and � would be the time constant. In the method
of maximum likelihood, this same likelihood function is maximized over the parameters �, to provide the
maximum likelihood estimate �̂ that predicts the observed data with the highest probability.

Bayesian statistics adds two important elements to the analysis of data, the prior distribution of the
parameters p(�|M) and the posterior distribution of the parameters p(�|x,M). The prior distribution of
the parameters (or simply “the prior”) can be thought of as the distribution describing our beliefs about the
values of the parameters before the data is observed. Similarly, the posterior distribution of the parameters
(“the posterior”) is the distribution representing what we should believe about the parameters after observing
the data at hand. In principle, given a likelihood function for the data and a prior for the parameters, the
posterior distribution of the parameters is uniquely specified and the Bayesian analysis is complete.

Note that, in Bayes’ theorem the p(x|M) need not be specified explicitly, as it can be calculated from the
likelihood and the prior:

p(x|M) =

�
p(x|�,M) p(�|M) d� (A2)

This is a consequence of the axioms of probability – the posterior distribution p(�|x,M), as a proper
probability distribution, must be normalized so that it integrates to one. In fact, the marginal probability of
the data, p(x|M), is a function of only the observed (fixed) data, and hence it is simply a scalar normalizing
constant.

In the simplest cases the posterior distribution can be found analytically. However, with more complex
models (e.g., multi-exponentials) analytical expressions for the posterior cannot be found easily or do not
exist, and then we must resort to numerical algorithms to approximate the posterior distribution. Two
commonly used numerical techniques are the Gibbs sampler and Markov Chain Monte Carlo (MCMC),
both of which have their roots in statistical physics (MCMC will be discussed in more detail below).
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of likelihood confidence intervals is obscure and controversial. This problem is greatly exacerbated
with multi-parameter distributions, the norm for complex models (see below) [4–6].

(b) Bayesian methodology can incorporate pertinent prior information, in addition to the information
given by the data at hand. Classical methods, including the method of maximum likelihood, explicitly
avoid using external information to influence parameter inference. However, prior information can be
extremely important. In practice, the experimentalist always has useful prior information available,
which may be as simple as knowing that certain parameter values are a priori extremely unlikely (e.g.,
the parameter may be bounded). Moreover, previous experiments in different systems or with different
experimental setups may provide useful information for constraining realistic parameter values in the
present experiment. From a Bayesian perspective, all relevant information should be used in data
analysis.

(c) Bayesian methodology elegantly handles complex, multi-parameter models without invoking ad hoc
techniques. Classical statistics has a wide assortment of pragmatic methods for dealing with “nuisance
parameters”, none of which follow from fundamental theoretical statistical principles, leading to
practical drawbacks. In likelihood analysis of multi-parameter models, for instance, confidence
intervals based on the conditional likelihood function cannot account for the uncertainty in other
parameters (known as the problem of “nuisance parameters”), resulting in confidence intervals that
are overly optimistic [4–6].

In contrast, in Bayesian analyses nuisance parameters can simply be integrated out to give a marginal
distribution of a parameter that is independent of the others. For example, if we have a two-parameter
model with a two-parameter likelihood function p(x|�,⇥,M), we can calculate the marginal posterior
distribution of only one of the parameters:

p(�|x,M) =

�

�
p(�,⇥|x,M) d⇥ =

1

p(x|M)

�

�
p(x|�,⇥,M) p(�|M) p(⇥|M) d⇥ (A3)

The uncertainty in other parameters (here ⇥) is inherently taken into account since we integrate over
all possible values of the unwanted parameter.

(d) Bayesian methods provide solutions for underdetermined systems, which are generally intractable
using classical methods. For example, in extreme cases we may have fewer data points than
parameters, or we may have two perfectly correlated parameters. As long as valid priors are specified,
Bayes’ theorem provides a valid posterior distribution, which may have large uncertainty yet still
retain useful information about the unknown parameters.

Prior distributions for the parameters

A critical component of Bayesian analysis is the choice of the prior distribution. Historically the prior has
been an object of criticism, due to the fact that the prior has the potential to subjectively bias parameter
inference. In practice, the choice of prior is often only an academic issue – in most cases, if the prior is
not pathologically extreme even moderate amounts of data will “wipe out” the prior, since the likelihood
function will dominate the calculation of the posterior. For objective scientific work, however, there is a
need for “reference” priors that represent a prior state of maximal ignorance (or minimum information)
about parameter values – priors that let the data speak as loudly as possible, even in the face of moderate
amounts of data. Theoretical developments in the latter half of the 20th century have largely answered
these criticisms, and several objective options are available for Bayesian priors that have a strong theoretical
basis.
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Bayes Theorem



Classic superposition method:	


Least-squares

Least-squares: Find the rotation that minimizes the sum of squared 
distances between corresponding (labelled) atoms 

protein A protein B



25 
models singularity

Leadzyme: Ordinary vs Weighted 
Least-Squares



Least-Squares vs Maximum likelihood: 
Variances still a problem

still a 
singularity!!

Translations and 
unconstrained variances 

are “unidentifiable”

Problem: Atoms can be 
translated so that they 
perfectly superimpose 

Solution: Constrain the 
variances



Classic superposition method:!
Least-squares

Multiple simultaneous superpositions for 
N molecules

X is a structure to be superpositioned!

R is a 3×3 rotation matrix!

M is the average structure

t̂i = � 1⇥KXi

1⇥K1K

The optimal rotations are calculated using a singular value decomposition (SVD). Let the SVD of an arbitrary
matrix D be U�V⇥. Then, the ML rotations R̂i are estimated by

M̂⇥⇥̂�1X̌i = U�V⇥

R̂i = VPU⇥ (45)

M̂⇥X̌i = U�V⇥

R̂i = VPU⇥ (46)

The mean structure is estimated as the arithmetic average of the optimally translated and rotated structures:
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1adz: Kunitz domain 2 of Tissue Factor Pathway Inhibitor!

71 aa, 30 NMR models

ML method down-weights variable regions

Burgering et al. (1997) JMB 269:395

Least-squares Maximum likelihood



1ng7: poliovirus 3A, soluble domain!

60aa, 10 NMR models

Maximum likelihood superpositions

Strauss et al. (2003) JMB 330:225

Least-squares Maximum likelihood



Correct for unequal variances by weighting by the 
inverse of the variance:!

!

!

!

!

!

Iteratively re-weighted least-squares algorithm:!
1.  Calculate weighted superposition with current variances!

2.  Calculate variances from current superposition!

3.  Loop until convergence

t̂i = � 1⇥KXi

1⇥K1K

The optimal rotations are calculated using a singular value decomposition (SVD). Let the SVD of an arbitrary
matrix D be U�V⇥. Then, the ML rotations R̂i are estimated by

M̂⇥⇥̂�1X̌i = U�V⇥

R̂i = VPU⇥ (45)

M̂⇥X̌i = U�V⇥

R̂i = VPU⇥ (46)

The mean structure is estimated as the arithmetic average of the optimally translated and rotated structures:
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Weighted Least-Squares



Hierarchical prior for the variances: Inverse 
gamma distribution

λj = a variance for atom j

PDF:

More realistic: variances 
cannot be zero or 

infinite
p(λ)

λ

Scalar Gaussian:
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Empirical Bayesian solution 
(hierarchical)

“Shrunken” covariance matrix

Old, broken solution

ML superposition solutions

In the following we briefly give the ML solutions for each of the unknown parameters of the superposition log-
likelihood equation from above.

Each observed structure Xi must be translated to its row-weighted centroid:

X̌i = Xi + 1K t̂i (45)

where t̂i is the ML estimate of the translation:

t̂i = � 1⇥K⇥�1Xi

1⇥K⇥�11K

The optimal rotations are calculated using a singular value decomposition (SVD). Let the SVD of an arbitrary
matrix D be U�V⇥. Then, the ML rotations R̂i are estimated by

M̂⇥⇥̂�1X̌i = U�V⇥

R̂i = VPU⇥ (46)

The mean structure is estimated as the arithmetic average of the optimally translated and rotated structures:

M̂ =
1
N

N⇤

i

X̌iRi (47)

Finally, the ML estimate of the atomic covariance matrix ⇥̂I� is given by:
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⇥
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where the unconstrained ML estimate of the covariance matrix ⇥̂U is:
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(X̌iRi � M̂)(X̌iRi � M̂)⇥ (49)
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M̂⇥X̌i = U�V⇥

R̂i = VPU⇥ (44)

The mean structure is estimated as the arithmetic average of the optimally translated and rotated structures:
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The difference is the covariance matrix

Translation

Rotation

ML superposition solutions

In the following we briefly give the ML solutions for each of the unknown parameters of the superposition log-
likelihood equation from above.

Each observed structure Xi must be translated to its row-weighted centroid:

X̌i = Xi + 1K t̂i (45)

where t̂i is the ML estimate of the translation:

t̂i = � 1⇥K⇥�1Xi

1⇥K⇥�11K

The optimal rotations are calculated using a singular value decomposition (SVD). Let the SVD of an arbitrary
matrix D be U�V⇥. Then, the ML rotations R̂i are estimated by

M̂⇥⇥̂�1X̌i = U�V⇥

R̂i = VPU⇥ (46)

The mean structure is estimated as the arithmetic average of the optimally translated and rotated structures:
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Finally, the ML estimate of the atomic covariance matrix ⇥̂I� is given by:
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ML weights by the inverse covariance matrix, which down-
weights variable regions.
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Assume the structures (matrices) have a 
Gaussian distribution

The usual scalar Gaussian (Bell curve) PDF:

The Matrix Gaussian has a covariance matrix 
(Σ) instead of a single variance

The matrix Gaussian PDF:

µ = mean!
σ = variance

ML superposition solutions

In the following we briefly give the ML solutions for each of the unknown parameters of the superposition log-
likelihood equation from above.
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Each atom has a variance and can co-vary with other 
atoms

Example covariance matrix for five atoms:

Covariance matrix

Variances are on the diagonal.!
Covariances are off diagonal elements.

1       2       3      4       5

1	


2	


3	


4	


5



1. Superimpose simulated structures!

2. Do PCA on the covariance/correlation matrix!

3. Plot PCs on structure

PCA structure plots

Red regions are self-correlated!

Blue regions are self-correlated!

Red and Blue are anti-correlated

PDB ID: 2sdf!
SDF-1, 30 NMR models

PC 1 PC 2 PC 3



Simulation test of the ML method: 
Generate random structures

Generated 300 random Gaussian 
structures, with known 

parameters:

§ mean structure!
§ covariance matrix!
§ true superposition!
§ rotations!
§ translations



Maximum likelihoodLeast-squaresTrue superposition

LS vs ML: Maximum likelihood recovers 
the true superposition accurately



Maximum likelihoodLeast-squaresTrue superposition

LS vs ML: Maximum likelihood recovers 
the true superposition accurately



Maximum likelihoodLeast-squaresTrue superposition

LS vs ML: Maximum likelihood recovers 
the true superposition accurately



Least-squares gives artifactual correlations



PCA for analyzing correlations in 
NMR families
Cdc13 NMR family!

PDB ID: 1s40



Molecular dynamics
MD trajectory of ubiquitin with NMR 

constraints

Lindorff-Larsen et al. (2005) Nature 433:128



Posterior mode solution for inverse Wishart 
priors on the covariance matrix

MCMC chain results for nonisotropic variance hyper-parameter



PC2 of ML superposition of 10 ribosome structures!
Hansen et al. (2002) Mol Cell. 10:117.!

Hansen et al. (2003) J Mol Biol. 330:1061

50S large subunit of the Haloarcula ribosome

A

EF-Tu

PE



Cdc13 TEBP α1

Three OB-fold telomeric domains

Pot1

GTGTGGGTGTG GGGGTTTTGGGG GGGATC



PC1
ML superposition of 

TEBP α1, cdc13, pot1

PCA of co-evolving structures

Loop conformations have co-evolved
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4 Translations

Conditional distribution of the translations t, given a flat prior (p (t) ⇥ C).
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assuming RiM⇥��11K = 0. This is a multivariate normal distribution,
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5 Rotations

Conditional distribution of the rotations Ri, given a proper uniform prior (p (Ri) ⇥ C).
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which is a matrix von Mises-Fisher distribution,
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3 Mean

Conditional distribution of the mean M, given a flat prior (p (M) ⇥ C).
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which is a matrix normal distribution,
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Conditional distributions: The mean

4.4 Isotropic covariance matrix
The conditional distribution of an isotropic covariance matrix (�iso = ⇥I), given a reference prior
(p (⇥) ⇥ 1

�), is:
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which is an inverse gamma distribution. This solution corresponds to the Bayesian version of the
traditional OLS superposition solution.

4.5 A Diagonal Inverse Wishart prior for a diagonal covariance matrix (mul-
tivariate scaled inverse chi square)

In the following we assume the covariance matrix is diagonal (� diagonal):
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4.6 Conditional probability for the covariance matrix �

If we further assume that the hyperparameter ⇥ is isotropic (i.e., ⇥ = ⇥I), then we have a simple
expression for the conditional distribution of the covariance matrix:
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This is simply another multivariate scaled inverse chi-square distribution.

4.7 Conditional probability of the variance hyperparameter ⇥

The “conventional” reference prior for the variance hyperparameter (p (⇥) ⇥ 1
�a ) leads to an im-

proper posterior, so we adopt a vague proper conjugate prior on ⇥ (a scaled chi-square with param-
eters �, m):
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which is a gamma distribution (or a scaled chi-square).

4

A matrix normal distribution centered on the sample average 
(the ML estimate)

Assume uniform improper prior on M

Figure 1: A conventional LS superposition vs the ML superposition (center and right) of 30 NMR
models of the 71 amino acid Kunitz domain 2 of Tissue Factor Pathway Inhibitor (PDB ID: 1adz).
All C�s were included in the calculations.

lations. We treat these smallest eigenvalues as “missing data” using an expectation-maximization
algorithm. For simultaneous estimation, we use iterative conditional maximization of the joint
likelihood augmented by the expectation-maximization algorithm. This method works very well
in practice, with excellent convergence properties for the many hundreds of real cases analyzed to
date. An example of a conventional LS superposition compared with our ML estimate is shown in
Figure 1.

2 A matrix normal probability model for the macromolecular
superposition problem

Consider N structures (Xi, i = 1 . . . N ), each with K corresponding atoms (landmarks), where
each structure is defined as a K⇥D matrix holding K rows of D-dimensional coordinates. We
assume a probabalistic model for the Procrustes problem in which each form Xi is distributed
according to a Gaussian probability density and is observed in a different unknown coordinate
system (Dryden and Mardia, 1998; Goodall, 1991a, 1995). We allow heterogeneous variances and
correlations among the atoms in the structures, as described by a K⇥K covariance matrix ⇥ for the
atoms. Under this Gaussian model, each Xi can be considered as an arbitrarily scaled, rotated, and
translated zero-mean Gaussian matrix displacement Ei ⇤ NK,D(0,⇥,�) of the mean structure M,

Xi = (M + Ei)R
�
i � 1Kt�

i (1)

where ti is a D⇥1 column vector for the translational offset, and 1K denotes the K⇥1 column
vector of ones.

3 A Procrustes matrix normal likelihood equation
The full joint likelihood equation for the model given in (1) is obtained from a multivariate matrix
normal distribution (Arnold, 1981; Dutilleul, 1999). Define

Yi = (Xi + 1Kt�
i)Ri

2
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Hyperparameter for inverse Wishart covariance 
matrix: Gamma distribution

1.3.5 Inverse Wishart for ⇥

For p⇥p square matrix variate V, with scale matrix �, and m degrees of freedom (m > p � 1 for invertible V),
the inverse Wishart distribution V ⇤ IW(�,m):

p (V|m,�) =
|�|

m
2 |V|�(m+p+1)

2
mp
2 �p
�
m
2

⇥ e�
1
2 tr (�V�1) (34)

The conditional distribution of ⇥ is then:

⇥ ⇤ IW (⇤+ S, k(n+ 2)) (35)

where

S =
n 

i

tr
⇤
[Yi �M]0[Yi �M]

⌅
(36)

(37)

Yi = (�iXi + 1kt
0
i)Ri

and we assume an isotropic prior scale matrix:

⇤ = ⌅I (38)

1.3.6 Gamma distribution for inverse Wishart hyperparameter ⌅

The gamma distribution for variate v, scale parameter ⇧, and shape parameter m, v ⇤ G(⇧,m), is defined as

p (v|⇧,m) =
xm�1

⇧m �(m)
e�

x
⇥ (39)

For gamma prior on ⌅, with scale ⇤ and DOF p (usually we take p = 2), the conditional distribution of the
hyperparameter ⌅ is:

⌅ ⇤ G

⌥
2

tr
�
⇥�1 + 2

⇥

⇥ , k
2 + 2p

2

�
(40)

p = 1 for exponential hyperprior on ⌅,
p = 2 for maxent hyperprior constrained so that p (⌅ = 0) = 0.
⇤ must be chosen carefully, e.g. as the expected variance per landmark. The scale parameter ⇤ of the hyperprior is
the most important prior component in the analysis – a Jeffrey’s prior results in an improper posterior, even though
the conditional is proper.

1.3.7 Halfnormal-gamma conditional probability distribution for the scale factors �

The conditional probability density function for �i, using a conjugate prior, has the form:

p (�i|X,⇥,M, ti,R) = C�i
m�1 exp

⌦
�⌥i

2
�i

2 + ⇥i�i
↵
, (41)

C =
2⌃

�m
2

i e
� �2i

8⇤i

�(m)D�m

⇧
�ip
2⇤i

⌃ , (42)
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